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Abstract

In this paper, we introduceVISEXP: a new visualiza-
tion tool designed to explore relations between con-
straints and variables in constraint problems. This tool
uses the explanation network built throughout compu-
tation. We show thatVISEXP is able to provide much
more information about how search is performed than
classical representations. Moreover, we illustrate the
animation feature ofVISEXP that provides invaluable
tools for visualization and therefore analysis of the dy-
namics of constraint solvers.

Introduction
Constraint programming has now proven its effectiveness
for a wide range of problems and applications. However,
debugging constraint applications or analyzing the behavior
of a constraint solver is still an important issue. Indeed, as
applications become more complex, adapted tools need to
be provided to users and application developers.

Various work have considered using explanations (sub-
sets of constraints justifying solver actions (Jussien 2003))
to overcome that issue. For example, (Junker 2001; Amil-
hastre, Fargier, & Marquis 2002) explain inconsistencies
in configuration applications, (Ouis, Jussien, & Boizu-
mault 2003) introduce explanation-based tools for user-
interaction, (Jussien 2003; Freuder, Likitvivatanavong, &
Wallace 2001; O’Callaghan, Freuder, & O’Sullivan 2003)
introduce explanation-based tools for user interaction in
constraint programming, etc.

In this paper, we show that explanations considered as a
trace of the behavior of the solver (as in thePALM system
(Jussien & Barichard 2000)) for example can be used, with
the proper visualization tools, as a source of information
about relations between variables and constraints that arise
through propagation. We show that visualizing those rela-
tions and their dynamics is an invaluable tool that: exhibits
static or dynamic propagation related structure between vari-
ables or constraints, exhibits ineffective decisions made dur-
ing search, exhibits hard resolution steps, exhibits the real
dynamics of the solver, etc.
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We claim that using the information contained in the ex-
planation network helps discover information that is not
available when looking only at the structure of the solved
problem or at domain reductions as they are performed dur-
ing search. Moreover, the explanation network provides in-
sights into the dynamics of search (as opposed to static ex-
ploration of conflicts or search procedures as introduced for
example in (Pu & Lalanne 2000)).

We presentVISEXP, a visualization tool that takes as in-
put a generic trace for constraint solvers as defined in (De-
ransart, Ducassé, & Langevine 2002) making it compatible
with any constraint solver able to provide explanations.

This paper is organized as follows. Explanations for con-
straint programming are introduced and their use as a link
between variables and constraints is described. Then, we in-
troduceVISEXP, the visualization tool we developed in this
specific context and its application to the visualization of the
explanation network. Finally, various experiments illustrate
the power of such a tool.

Explanations for constraint programming
Explanations (specializing (A)TMS (Doyle 1979)) and gen-
eralizing nogoods (Schiex & Verfaillie 1994)) have been ini-
tially introduced to improve backtracking-based algorithms
(Ginsberg 1993). However, they have been recently used
for many other purposes (Jussien 2003) including debugging
and analysis of the behavior of constraint solvers.

Definition
An explanation contains enough information to justify a de-
cision (throwing a contradiction, reducing a domain, etc.): it
is composed of the constraints and the choices made during
the search which are sufficient to justify such an inference.

Definition 1 (Explanation) An explanation of an inference
(X ) consists of a subset of original constraints (C′ ⊂ C) and
a set of instantiation constraints (choices made during the
search:d1, d2, . . . , dk) such that:

C′ ∧ d1 ∧ . . . ∧ dn ⇒ X

C′ ∧ d1 ∧ . . . ∧ dn is called an explanation.

An explanatione1 is said to bemore precisethan expla-
natione2 if and only if e1 ⊂ e2. The more precise an expla-
nation, the more useful it is.



Computing explanations
The most interesting explanations are those which are
minimal regarding inclusion. Those explanations allow
highly focused information about dependencies between
constraints and variables. Unfortunately, computing such an
explanation can be exponentially costly. A good compro-
mise between precision and ease of computation consists in
using the solver embedded knowledge to provide explana-
tions (Jussien & Barichard 2000). Indeed, constraint solvers
always know, although it is scarcely explicit,why they re-
move values from the domain of the variables. By making
that knowledge explicit, quite precise and interesting expla-
nations can be computed as constraint solvers are supposed
to efficiently perform their task! Therefore, explanations
strongly depend both on the constraint solver at hand and
on the way the problem is modelled. For example, let us
consider variablesv1 andv2 with domains{1, 2, 3}.
• Let c1 be a first decision constraint:c1 : v1 ≥ 3. Let us as-

sume that the filtering algorithm in use is arc-consistency
filtering (Mohr & Henderson 1986). The constraintc1

leads to the removal of{1, 2} from the domain ofv1. An
explanation for the new domain{3} of v1 is thus{c1}.

• Let c2 be a second constraint:c2 : v2 ≥ v1. Value 1 and
value 2 ofv2 have no support in the domain ofv1, and thus
c2 leads to the removal of{1, 2} from v2. An explanation
of the removal of{1, 2} fromv2 will be: c1∧c2 becausec2

precipitates that removal only because previous removals
occurred inv1 due toc1.

The explanation network
Usually, explanations may be used for user interaction
(Ouis, Jussien, & Boizumault 2003; Freuder, Likitvi-
vatanavong, & Wallace 2001), dynamic constraint handling
(Debruyneet al. 2003) or even improvement of search al-
gorithms (Ginsberg 1993; Jussien, Debruyne, & Boizumault
2000; Jussien & Lhomme 2002). However, explanations, as
we defined them, provide insightful information about the
constraint solver dynamics.

Explanations induce a pair of networks, the first one links
the constraints that cooperate at some level to solve the prob-
lem, whereas the second network relates the variables of the
problem with regard to their impact on one another. There-
fore, considering explanations or, more precisely, the pair of
networks they induce between constraints and between vari-
ables, proves to be fruitful for understanding the behavior of
the constraint solver on a given problem. Indeed, constraints
appearing in an explanation are cooperating (event if they
do not share any variable) to remove some values and are
therefore related. Similarly, variables related to constraints
appearing in an explanation are related during resolution.

The aim of this paper is to show that it may be interest-
ing to visualize and analyze the relations (and their dynam-
ics) between constraints and between variables. Notice that
we are interested in the use of the explanation network as
a representation of the solver dynamics. Therefore,a pri-
ori (Amilhastre, Fargier, & Marquis 2002) ora posteriori
(Junker 2001) explanation computation techniques would be
of no use here.

VISEXP: our visualization tool
The number of explanations may be really large when solv-
ing large problems. Therefore, the number of links between
constraints or between variables may be extremely large and
the resulting graph really dense. This introduces two issues:
how to differentiate strong links (constraints/variables often
cooperating) and loose links (constraints/variables seldom
cooperating); how to represent such a dense graph. The
first issue is easily overcome by introducing a notion of
weight (representing the number of relations between con-
straints/variables) in the graph. The second issue demands a
new representation of graphs.

An alternate representation of graphs

So far, visualization of networks has mainly focused on
node-link diagrams because they are popular and well under-
stood. However, node-link diagrams do not scale well: their
layout is slow and they become quickly unreadable when the
size of the graph and link density increase.

In this paper, we present a recent technique that uses adja-
cency matrices instead of node-link diagrams to interactively
visualize and explore large graphs, with thousands of nodes
and any number of links. This technique relies on the well
known property that a graph may be represented by its con-
nectivity matrix, which is anN by N matrix, whereN is the
number of vertices in the graph, and each row or column in
the matrix stands for a vertex. When two verticesVi andVj

are linked, the corresponding coefficientmij in the matrix is
set to1, otherwise it is set to0.

From a visualization standpoint, not only do we switch
on or off the cell located at the intersection ofVi andVj ,
but we use color coding as well when dealing with weighted
links: the heavier the weight (here the number of interac-
tions), the darker a link. Unlike node-link diagrams, matrix-
based representations of graphs do not suffer from link and
node overlappings. Virtually every link (out of theN2/2
links) in the graph can be seen separately (see figure 1). With
this technique, we can show as many links as the display
hardware resolution allows, roughly 2 million pixels on a
regular1600 × 1200 display. Moreover, advanced informa-
tion visualisation techniques such as dynamic queries (Card,
Mackinlay, & Shneiderman 1999), fisheye lenses (Carpen-
dale & Montagnese 2001) and excentric labels (Fekete &
Plaisant 1999) enhance the exploration of large graphs and
push the matrix-based visualization one step further in cop-
ing with large networks.

The main tradeoff of such a technique lies in the fact that
vertices are no longer represented by a unique graphic sym-
bol, they are rather distributed on both axes of the matrix.
This is why users may often need some training before they
get familiar with the matrix metaphor. Further investiga-
tion of this technique in terms of human-computer interac-
tion is in progress. It aims at assessing more formally the
advantages and weaknesses of the matrix metaphor com-
pared to the traditional node-link metaphor. At this stage,
one may already note that the node-link representation be-
comes quickly unreadable while the number of nodes and
the density of links increase, whereas users can still perform



Figure 1: Representing a graph with 220 vertices and 6291
links using a node-link classical diagram (left) and an ad-
jacency matrix (right ). The matrix view is produced by
VISEXP. A fisheye magnifies the central part of the dis-
play. Notice that the node-link diagrams in this paper are
produced byneato , an open-source graph layout program
provided by AT&T. It relies on the force-directed layout al-
gorithm of Kamada and Kawai (Kamada & Kawai 1989).

various tasks on the equivalent matrix-based representation.
Only tasks related to finding a path in the network appear to
be performed more easily on a node-link representation, as
long as it remains readable.

Making sense of graphs

Making sense out of network data often depends on the abil-
ity to understand its underlying structure. Therefore, cluster
detection has been an active topic of research for a long time.
Many works have concentrated on data analysis techniques
in order to aggregate the graph into its main components.
From a different standpoint, Bertin (Bertin 1983) has shown
that the discovery of the underlying structure of a graph can
be achieved through successive permutations over the rows
and columns of the grid representing it. This idea relies on
the fact that the rows and columns of a matrix can be ordered
according to a given criterion, which is another advantage of
the matrix metaphor as ordering the vertices and links in a
node-link diagram is not straightforward.

In VISEXP, we achieve clustering through successive
permutations of rows and columns according to two generic
algorithms (a hierarchical agglomerative algorithm and a
partition-based algorithm). The reader may refer to (Berkhin
2002) for a good survey on clustering techniques. Other
domain-specific algorithms can be fit in our system effort-
lesslye.g. algorithms tailored for constraint programming
graphs. In the following, we will present our early exper-
iments in making use of matrix-based visualizations with
constraint programming graphs.

Visualizing the explanation network
As we saw above, explanations introduce dynamic relations
between variables and constraints that depend both on the
constraint network itself and the resolution dynamics of the
solver. In order to illustrate the interest of explanations for
providing new information about resolution, we introduce
three different types of graphs that are provided byVISEXP.

Graph parameters

Constraintsci andcj are connected in three different ways
when solving a constraint problem:

• considering only the static structure information:ci is
linked tocj each timeci reduces a variable shared withcj .
Linking those two constraints expresses the fact that the
activity of ci will awakecj in all future computations even
if nothing new happens (no domain reductions). Graphs
representing such a relation will be denotedcc-static
in the future.

• considering dynamic relations arising through computa-
tion: ci is linked tocj each timeci reduces a variable and
cj andci share any common variable. This relation states
that all constraintcj with their past effects are helping
ci adding information to the constraint store. More links
are taken into account in this graph. Such a linking can
be considered as ana posterioriexplanation (this is how
DNAC4 works for example(Bessière 1991)). Graphs rep-
resenting such a relation will be denotedcc-dynamic
in the future.

• considering explanation:ci is linked to cj each timeci

and cj appear in the same explanation during computa-
tion. This relation represents the fact thatci andcj con-
currently worked to provide new information to the solver.
It represents some dynamic structure appearing during
computation as constraints cooperate to solve the prob-
lem. Graphs representing such a relation will be denoted
cc-explain in the future.

Notice that these graphs, being undirected, will result in
symmetric matrices. Directed graphs could have been con-
sidered taking into account the way constraints cooperate:
this is left for future work. Notice that all the above defined
relations can easily be extended to variables.

Representing the dynamics of solving

As already mentioned, all links in those graphs are weighted
with the number of times the relation is actually established
throughout computation. This helps enhance the static struc-
ture with dynamic information pointing outactiverelations.
More precisely, we keep a full history of activity within the
graph. In this way, we can dynamically query the graph for
links that are active within a user-controlled time range and
compare the amount of activity between links in that range.
The user may visualize the activity in the graph through-
out the whole resolution process or in a smaller time range
whose bounds and extent are interactively parameterized.
By sweeping the time range from the beginning to the end
of the history, the user may play back the resolution process
and see which links are established, when, and how often.
VISEXP also offers user-defined time slices. Simply put, a
time slice is a time range between two events of interest. For
instance, in our experiments, we were interested in activity
between pairs of successive solutions.VISEXP computes
the relevant time slices and allows the user to jump between
successive time slices through direct interaction as well.



Figure 2: From left to right:cc-static , cc-dynamic ,
andcc-explain graphs for the computing of the first so-
lution of our all-different problem

Experiments
In the following, we report various experiments with
VISEXP. First, we show on a small problem how only
cc-explain graphs allow both the visualization of com-
mon sense information about the resolution and the retrieval
of new information. Second, we show how the animation
features ofVISEXP help understand constraint solving.

Retrieving known information
Let us consider a problem involving 13 variablesai∈]3],
bi∈]3], d1, d3 whose domain is[1..3] andci∈]5] whose do-
main is [1..5]. Five all-different (Régin 1994) con-
straints are posted on these variables: three on respectively
theais (constraintc00001), thebis (constraintc00004) and the
cis (constraintc00002) and two others relating the different
sets of variables, respectively ond1,c2 and d3 (constraint
c00003) and ona1, b1, c1, andd1 (constraintc00005).

We consider the search of the first solution of this prob-
lem. Constraint propagation is not powerful enough to ex-
hibit a solution without any enumeration. Nine value as-
signments (considered here as constraints) need to be made
in order to reach a solution. We will therefore report 14 (5
+ 9) constraints on the following graphs (see the ellipses in
figure 2).

What are we looking for ? The definition of the problem
itself gives insight on how constraints should interact during
solving: eg. sharing at least one variable,c00002 andc00003

should often interact; moreover,c00001 and c00004 should
not have much impact on solving as they are really easy to
satisfy; finally,c00002, c00003, andc00005 should be thehard
part of the problem. Regarding search, as usual early choices
(i.e. here with smaller constraint index) should have a deep
impact on late choices as they are used to direct search.

Retrieving the information We report in figure 2 the
three constraint-constraint graphs that can be obtained using
the generic trace generated by our solver. Thecc-static
graph confirms strong links betweenc00002, c00003, and
c00005. But, it also shows misleading relations: constraints
c00012 (enumeration constraintc2 = 2) and c00013 (enu-
meration constraintc3 = 1) are strongly related toc00002

and c00003 (the circled part of the graph on the bottom
left). The cc-dynamic graph provides some more in-

Figure 3: An all-different problem (first solution): a classi-
cal representation of thecc-explain graph

formation: constraintsc00004 and c00001 are unrelated to
otherall-different constraints ((see the arrows) ) as
expected. However, the expected relation between enumer-
ation constraints is still not apparent.

Only the cc-explain graph gives the full informa-
tion: links between theall-different constraints, and
more importantly the strong impact of early enumeration
constraints (c00009) compared to late ones (c00014) (down-
ward arrow). Moreover, some new information appear: ob-
viously enumeration constraintc00008 (and similarly con-
straint c00010 – see the symmetric lines) had no impact in
search (it had almost no subsequent relations with other con-
straints).

Figure 3 shows a classical node-link representation of the
cc-explain graph. In this representation, some of the
structure information can be retrieved (the central role of
c00005 appears and the peripheral role of constraintsc00001,
c00004, c00008, andc00010). However, information about late
impact of early decisions (the solver dynamics) cannot be
visualized.

Retrieving non trivial information

Let us now consider a set of one hundred variablesxi∈]100]

whose domain is[1..100]. A set of 99 constraints is posted:
∀i ∈]99], xi < xi+1. Arc-consistency enforcement on this
problem is sufficient to lead to a solution. This is therefore a
purely (long) propagation problem for sorting the variables.
Figure 4 gives the three different graphs that can be drawn
from the trace of the resolution of this problem.

What do we see ? As expected, thecc-static graph
is of no use as it only gives what we already know: con-
straints are only statically related to their preceding and
following constraints in the posting sequence. Notice that
the cc-dynamic graph does not help much more. How-
ever, thecc-explain graph gives much more informa-
tion about what happened during propagation: indeed, we
find again the strong interaction between close (in the post-
ing sequence) constraint, but we also see that all constraints
are related to each other. Moreover, we can see that the
farther the constraints from one another in the posting se-
quence, the less they interact (but they still interact). More-



Figure 4: From left to right:cc-static , cc-dynamic ,
andcc-explain graphs for the propagation phase of our
sorting problem. Constraints are ordered in the posting se-
quence order from right to left and from top to bottom.

over, themiddleconstraints seem to interact more often than
peripheralconstraints: see the darker part in the center of
thecc-explain graph.
What do we learn ? Those observations on the
cc-explain graph help us understand why the propaga-
tion takes so long in such a problem: all constraints need
to be propagated several times as they all have both a short-
term and a long-term impact during the resolution. More-
over, we illustrate here the interest of the visualization of the
explanation networkwrt classical analysis of the constraint
graph which is not able to provide any information. How-
ever, one question remains: whymiddleconstraints appear
to be so active ? For that, we need to observe the dynamics
of propagation.

Resolution dynamics

One of the key feature ofVISEXP is that it makes it pos-
sible to visualize the dynamics of search and propagation.
Animations are not easy to render on a printed paper. How-
ever, Figure 5 shows 7 time slices from thecc-explain
graph reported in figure 4 for our sorting problem.

This visualization of the dynamics of the propagation
phase on the sorted problem clearly shows that, in this prob-
lem, two phases are clearly identified. This illustrates the
way our solver works. The first constraint to be propagated
is the last posted one (constraints are not propagated upon
posting but all at once) inducing a chain of modifications
of the upper bounds of the variables through the awakening
of all the other constraints. Then, the remaining constraints
are propagated each modifying the lower bound of one vari-
able. The two phases showed in figure 5 illustrate those two
waves of modifications. Our animation is invaluable to il-
lustrate such an intimate behavior of the solver as it gives
information about the way propagation works.

Moreover, this information provides an explanation of the
fact thatmiddleconstraints appear to have more activity than
others. This is due to the fact that those constraints provide
propagation both on upper and lower bounds of the variables
whereasperipheralconstraints impact only one bound of the
variables.

Related work
Classical constraint solver embedded visualization tools
(such as Explorer in Oz (Schulte 1997) or Visual Search Tree
in Chip (Dincbaset al. 1988)) use the search tree of a con-
straint problem as their central metaphor. Exploration and
visualization of the search tree are user-driven and interac-
tive. CLPGUI(Fages 2002) allows a 3D manipulation of the
search tree and provides some tools to visualize domains.

However, search tree based tools cannot provide informa-
tion about propagation and dynamic relations between con-
straints as they are strongly related to the underlying logic of
computation (observation points are limited to choice points
in the search). Moreover, search tree visualisation tools are
misled by the branching schemes used in constraint solving
that may not really use the underlying structure of the prob-
lem therefore linking (in sequence) unrelated decisions.

VISEXP is the first tool that allows the visualization of
dynamic information that do not consider the order in which
decisions are taken, thus allowing a complete view of the
problem.

Conclusion and further work
In this paper, we introducedVISEXP: a new visualization
tool well suited for exploring relations between constraints
and variables that uses the explanation network provided by
a constraint solver. We showed that visualizing the expla-
nation network provided much more information about how
search is performed than classical representation. Moreover,
we illustrated the animation feature ofVISEXP that pro-
vides invaluable tools for visualizing the dynamics of con-
straint solvers.

VISEXP is only a first step in new visualization tools for
constraint programming. We are currently investigating the
extension of our tool in various directions, including: con-
sidering at the same time constraints and variables in the
same representation in order to have a complete view of the
solved problem; providing state of the art automatic clus-
tering algorithms in order to bring closer related constraints
and variables; visualizing and analyzing large scale prob-
lems. Moreover, we strongly believe in the capability of
such a tool to provide debugging and dynamic analysis tools
for constraint solvers.

Finally, we plan in a near future to useVISEXP to anal-
yse the performance of explanation-based search algorithms
(such asdecision-repair (Jussien & Lhomme 2002))
in order to explain their behavior. The idea here is to pro-
vide new techniques exploiting the explanation network that
could lead to new powerful algorithms.
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